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Abstract 

ADPN (Asynchronous Dynamic Pushdown Networks) are an abstract model for concurrent programs 

with recursive procedures and dynamic thread creation. Usually, asynchronous dynamic pushdown 

networks are described with interleaving semantics, in which the backward analysis is not effective. In 

order to improve interleaving semantics, tree semantics approach was introduced. This paper extends 

the tree semantics to ADPN. Because the reachability problem of ADPN is also undecidable, we address 

the context-bounded reachability problem and provide an algorithm for backward reachability analysis 

with tree-based semantics Approach. 
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1. Introduction 

With development of multi-core processor, the research on concurrent program has become the focus of 

programming. Usually, the concurrent program employs concurrent pushdown system or parallel 

procedure call for modeling, which two models, however, fail to well simulate program with dynamic 

thread creation. Bouajjani et al. suggested in 2005 the DPN which are applicable to modeling of 

concurrent program containing recursive procedures or dynamic thread creation, yet its execution 

semantics is interleaving semantics, in which the backward reachability analysis is inefficient. Lammich 

et al. suggested tree semantics for DPN to model execution of program as a tree, which more conforms to 

actual running of program, and they provided the reachability analysis means for dynamic pushdown 

networks under tree semantics yet without considering intercommunication of threads. Based on 

dynamic pushdown networks model, Bouajjani raised ADPN model, whose reachability problem, 

however, is undecidable and backward reachability on it is complicated. Faouzi modeled program 
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containing dynamic thread creation, presented context-bounded analysis algorithm for this model, and 

proved it is decidable. Wenner extended dynamic pushdown networks to weighted dynamic pushdown 

networks to enhance modeling capacity of model. The paper extends tree semantic analysis into ADPN 

model to make it more efficiently conduct backward reachability analysis, and solved undecidable 

problem using the context-bounded approach. The backward reachable patterns set 
*Pr Me  of this model 

keeps regularity property under tree semantics, i.e., able to construct automator to receive a group of 

backward reachable patterns set 
*Pr Me . The paper structures an intermediate model to simulate 

execution mode of tree semantics, calculates backward reachable patterns set of this intermediate model 

in context of finite times, and uses projection operation to derive the backward reachable patterns set on 

original model. Finally, the complexity analysis on this algorithm is presented. 

 

2. Relate Knowledge 

ADPN is extension of DPN to simulate pushdown, new process and asynchronous communication of 

inter-thread using of shared memory. 

ADPN is a quintuple M = (G, P, Γ, △l, △g), where G is global state set, P is local state set, Γ is stack 

symbol, △l is set of local migration rules: (a) ργ
l→ρ1w1; (b) ργ

l→ρ1w1 ▷ρ2w2, where ρ, ρ1, ρ2∈ P, 

γ∈Γ, w1, w2∈Γ∗; △g is set of global migration rules: (a) (g, ργ)
l→  (g’, ρ1w1); (b) (g, ργ)

l→ (g’, 

ρ1w1)▷ρ2w2; where g, g’ ∈ G , ρ, ρ1, ρ2 ∈ P, γ∈Γ, w1, w2∈Γ*. 

ADPN’s pattern is (g, α) ∈ G × (P Γ*), where g is global state, character string α = ρ1w1ρ2w2 … ρn wn, 

and each substring represents corresponding DPN pattern of ADPN pattern.  

Let C represent ADPN pattern set, migration relation is defined as: (g, ս)
l→ (g’, v) is true, then 

ργ
l→ p1 w1 belongs to rules set △l, and ս = ս1 ρ γ ս2, v = ս1 ρ1 w1 ս2, g = g’, or ργ

l→ p1 w1 ▷ ρ2 w2 

belongs to rules set △l, or (g, ργ)
l→ (g’, ρ1 w1) belongs to rules set △g, and ս = ս1 ρ γ ս2, v = ս1 ρ1 w1 

ս2, or (g, ργ)
l→ (g’, ρ1w1) ▷ ρ2w2, and ս = ս1ργս2, v = ս1 ρ2 w2 ρ1 w1 ս2; 

Where ս1 ∈ (PΓ∗)*, ս2∈Γ∗(PΓ∗)*. Global migration and local migration rules sets constitute the whole 

migration system. 

State is reachable: There is ADPN M and patterns set S⊆C, define postM*(S) and preM*(S) as respectively 

representing forward and backward reachable patterns sets that start from pattern S. The forward and 

backward reachability problems can respectively be defined as: patterns set I and F are respectively 

initial and a certain given pattern sets. To judge whether the state in given pattern F is reachable just 
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needs to judge whether postM*(I)∩F = φ or preM*(F)∩I = φ is true. However, these two reachability 

problems are both undecidable. 

K-context-bounded state is reachable: Qadeer et al. Put forward context-bounded reachability analysis. 

The calculation is switched from one thread to another thread, which is defined as context switching. 

K-boundary means the corresponding migration sequence at most contains K contexts. 

K-context-bounded state being reachable just means the set of state reachable by ADPN in K contexts. 

postk,M*(S) and prek,M*(S) are respectively defined as set of forward and backward reachable patterns that 

start from S and reachable to K-context-boundary. The K-context-bounded state reachability problem is 

decidable. Musuvathi et al. proved that majority of states can be detected as long as K is set as a small 

constant. 

 

3. Tree Semantics of ADPN 

This section extends tree semantics to ADPN, and migration sequence is partial order, which is similar to 

a tree, as shown in Figure 1. The initial state of the migration sequence only contains a thread, and new 

threads are created dynamically. The migration sequence of newly created threads correspond to 

execution tree on the left of node S, and the migration sequence on the right of node S is original thread. 

The form is defined as TM: = N L TM/S L TMTM/L < G,PΓ* >, where Nlt corresponds to non-dynamic 

creation rule l, and what follows it is t; S l tst corresponds to dynamic creation rule l, and what follows it 

is a dynamically created new thread node ts and original thread’s node t; L <g, pw> corresponds to the 

pattern when thread running terminates. The advantage of tree semantics is immediately judging which 

progress the migration belongs to via execution model of tree form.  

 

N l1

S l2

N l4 N l3

L <g,pw> L <g,pw

spawn

 

Figure 1. ADPN Execution Tree 

 

Definition 1 (Execution tree): The execution tree is defined as migration sequence of model under tree 

semantics. Migration rule⇒M⊆<g, PΓ*>×TM×<g’, ConfN > means the initial state only contains 

execution tree of single thread, where ConfN is pattern α of corresponding DPN. When the initial state 
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contains multiple threads, definition 
h

Mc c′⇒  means migration from pattern c to pattern c’ via execution 

tree h, where h = t1 … tn. 

The execution tree is regular. The paper adopts hedge-automator for receiving. Hedge-automator T = (S, 

A0, D), where S is set of a group of finite states, A0 is an initial automator meeting L(A0)∈S*. Rules set D 

= DL∪DN∪DS: The rule s→A1∈DL simulates leaf node, rule N

ls s D′→ ∈  simulates 

non-dynamically created node, where, s, s’, ss∈S, l∈L, automator A1 receives all patterns sets (L(A1)∈(G, 

(PΓ*)+)). 

Execution tree h = t1 … tn∈TM* can be received by hedge-automator when and only when execution tree 

t1 … tn can be simulated by rules set D and initial states set of execution tree respectively correspond to 

initial states set s1 … sn∈L(A0) of automator. Rule labT⊆S×TM represents the association between 

hedge-automator and execution tree, as shown below in form: 

[Leaf node] labT (s, L <g, pw>)⇔s→A1∈DL∧<g, pw>∈L(A1) 

[Non-dynamic creation] labT (s,N l t)⇔ ( , )N T

ls s D lab s t′ ′→ ∈ ∧  

[Dynamic creation] labT (s, S l ts t)⇔ 

( , ) ( , )s S T T s s

ls s s D lab s t lab s t′ ′→ ∈ ∧ ∧  

Where labT(s, t) means the state of execution tree t corresponds to state s of automator. It is assumed that 

labT(s1…sn,t1…tn)⇔labT(s1,t1)∧…∧labT(sn,tn), then the language received by hedge-automator T is 

0( ) : { | ( ). ( , )}TL T h s L A lab s h= ∃ ∈ . 
 

4. Backward Reachable Algorithm Based on Tree Semantics 

It is assumed that pattern of ADPN is <g, α>, where α is corresponding DPN pattern. Receiving pattern 

α of automator A is structured according to literature. The paper will structure automator Z receiving 

ADPN pattern <g, α>. For any character string u1pu2∈L(A), automator Z receives character string w = 

u1(g,p)u2, where u1∈(PΓ*)*, p∈P, u2∈Γ*(PΓ*)*. 

Theorem 1: ADPN M is given, and automator Z receives character string w = u1(g, p)u2, based on this, 

the paper structures automator Zpre* as meeting L(Zpre*) = pre*(L(Z)). Time complexity for structuring 

Zpre* automator is O (|Q3|×|△|). 

Prove: There is ADPN M whose pattern is <g, α>, and automator A receives character string α = u1pu2, 

automator Z = (Q, Σ, δ, q0, F) receiving character string w = u1(g, p)u2  can be easily structured, then 

automator Zpre* = (Q, Σ, δ’, q0, F) is structured, wherein the rule of δ is as follows: 
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1. If (g, pγ)
l→ (g’, p1w1) ∈△, and 

1 1gp wq qδ ′→ , wherein q, q∈ Q, then (qp, γ, q’)∈δ’ is true, where 

qp means the new state arrived after q receives character p. 

2. If (g, pγ)
l→ (g′, p1 w1) ▷ ρ2w2∈△, and 

2 2 1 1gp w p wq qδ ′→ , wherein q, q ∈ Q, then (qp, γ, q’)∈δ′ 

is true, wherein, qp means the new state arrived after q receives character p. 

As state Q is constant, structuring of automator Zpre* is always terminable. According to rule of migrating 

δ’, efficient automator structuring method is adopted to structure Zpre*, with time complexity of 

structuring being O (|Q3|×|△|). Let <g, α>∈ pre* (L(Z)), and<g, α>
l→ <g, α’>, then <g, α’> ∈ L(Z). 

Automator Z receives pattern <g, α’>. It is derived from structuring rule of automator Zpre* that <g, α>∈ 

L(Zpre*). Let <g, α>∈ L(Zpre*), and <g, α>
l→ <g, α’>, it is derived from structuring rule of Zpre* that <g, 

α’>∈ L(Z), and it is concluded that <g, α>∈ pre*(L(Z)). So L(Zpre*) = pre*(L(Z)) is true. q.e.d. 

To combine the state of hedge-automator and corresponding ADPN’s local state into a new state, and 

realize execution mode of tree semantics for migration sequence, frist a special ADPN model M×T = (G, 

P×S, Γ, L, △l, △g) is structured, whose pattern is C’×T⊆ConfM×T, and form is as follows:  

C’×T: = {(g,(p1, s1)w1...(pn,sn)wn)|(g,p1w1...pnwn) ∈C′∧∀i.1≤i ≤n.∃A1.si→A1∈DL∧<g,piwi>∈L(A1)} 

The new pattern C′×T combines state in hedge-automator H with the local state of each of its 

corresponding model M, with form being (g,(p,s)γ). 

Global migration rule △g of ADPN model M×T is defined as follows: 

 [Non-dynamic creation rule]  

( , ( , ) ) ( , ( , ) ) g

lg p s g p s wγ ′ ′ ′ ′→ ∈∆  is true, when and only when 

( , ) ( , ) g N

lg p g pw s s Dγ ′ ′→ ∈∆ ∧ → ∈  is true. 

 [Dynamic creation rule] ( ,( , ) ) ( ,( , ) ) ( , )s s g

lg p s g p s w p s wγ ′ ′ ′ ′→ ∈∆  is true,  

when and only when ( , ) ( , ) s s g s S

lg p g p w p w s s s Dγ ′ ′→ ∈∆ ∧ → ∈   is true. 

Local migration rule △l is defined as follows: 

[Non-dynamic creation rule] 

( , ) ( , ) l

lp s p s wγ ′ ′ ′→ ∈∆  is true, when and only when l N

l lp pw s s Dγ ′→ ∈∆ ∧ → ∈  is true. 
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[Dynamic creation rule] ( , ) ( , ) ( , )s s g

lp s p s w p s wγ ′ ′ ′→ ∈∆  is true, when and only when 

s s g s S

l lp p w p w s s s Dγ ′ ′→ ∈∆ ∧ → ∈   is true. 

Definition 2 (backward reachable pattern under tree semantics). There is given ADPN M, whose pattern 

C’ = (g, α), C’∈ConfM, where α is corresponding DPN pattern. As pattern α can be received by 

automator A, the form can also be C’ = (g, A). It is known that execution tree H⊆TM*, and backward 

reachable patterns set based on tree semantics is defined as follows: 

[ ]( ) : {( , ) | ( , ) , .( , ) ( , )}
h

MM Mpre H C g Conf g C h H g gα α α α′ ′ ′ ′ ′ ′= ∈ ∃ ∈ ∈ ⇒  where H is regular execution tree. As C’ 

is regular set, so preM[H](C’) is also kept regular, and preM[H](C’) can be received by structuring 

automator. 

However, reachability problem of ADPN under tree sementics remain undecidable, and context-bounded 

technology is adopted to solve this problem. Definition preK,M[H](C’) represents the K-context-bounded 

backward reachable patterns set that starts from pattern C’ under model M. 

Calculation of preK,M[H](C’) can be divided into K steps: first calculate pre1,M[H](C’), i.e., calculate 

backward patterns set starting from pattern C’ and with context switching not occurring. For all patterns 

set pre1,M[H](C’) calculated from previous context, and for all g’∈G, if (g’, u’) ∈ pre1,M[H](C’), then 

calculate pre1,M[H](g’, u’). Calculate recursively like this until finishing calculating K contexts, to get 

K-context-bounded backward reachable patterns set. Following is analysis on how to calculate 

pre1,M[H](g, u). 

As DPN automator A receives character string u1(p, s)u2, automator Z receiving a character string 

u1(g,(p,s))u2 can be structured, where u1(p, s)u2∈L(A), u1∈((P, S)Γ*)*,p∈P,u2∈Γ*((P, S)Γ*)*. 

According to theorum 1, the automator Zpre*  can be structured, hence, following is derived: 

pre1,M[H](g,u) = 
*( ,{ ( *) : ( , ) ( )})pre

g G
g w P w upu u g p u L Z+

′∈
′ ′ ′ ′∈ Γ = ∩∃ ∈

 

The patterns set pre1,M[H](C’) calculated each time is of (G,((P, S)Γ*)*) form. In local state, S represents 

execution tree represented by hedge-automator in calculating reachable pattern. To get the patterns set of 

original model, a projection operation projT: 2 2M T MConf Conf× →  is defined.  
projT(C) = {(g,p1w1 ... pnwn) | ∃s1,...sn∈S. s1,...sn∈L(A0) ∧(g,(p1, s1)w1...(pn, sn)wn)∈ C } 

A backward reachable algorithm can be derived from above analysis, as shown in Figure 2. 
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Figure 2. Reverse Reachability Algorithm Based on Tree Semantics 

 

The first line simulates execution mode of tree semantics for migration sequence by structuring an 

intermediate model M’. while cyclically controls K context-boundaries. local() represents the operation 

of projecting ADPN patterns to DPN pattern. Clevel represents calculating reachable pattern under the 

levelth context. pre1,M[H]() operation represents all possible reachable patterns sets in each context. As 

the patterns sets from reach able sets are patterns set of intermediate model M’, the pattern of reach able 

pattern set reachable is subjected to projection to get reachable patterns set under model M. 

 

5. Analysis on Algorithm 

The complexity of algorithm suggested herein is O(|G|k-1×|Q3|×|△|). The complexity of new model 

structured via given model M and execution tree H is linear complexity. According to theorem 1, the time 

complexity for structuring of automator Zpre* each time is |Q3|×|△|, as the time for context-boundary is k, 

the execution sequence g1 … gk-1∈Gk-1 for for loop in the worst case has |G| k-1 possibilities. projT() 

function is linear complexity, hence the complexity of algorithm is O(|G|k-1×|Q3|×|△|), which has certain 

advantages over the algorithms such as k-delimited DPN reachability analysis, etc. 

 

6. Conclusion 

The tree semantics simulates the running of concurrent program more accurately than interleaving 

semantics and extends modeling capacity of model (such as being able to show which thread the 

migration belongs to), and can more efficiently conduct backward reachability analysis than interleaving 

semantics. To make the reachability problem decidable, the algorithm adopts context-bounded approach 

to make backward reachability analysis on ADPN, and structures an intermediate model to realize 

Input: ADPN M，tuple M = (g, A) and integer k and pattern C 
Output: Backward reachable patterns set pre*(C) 
1. Structure hedge-automator T according to the rule as stated in section 3; 
2. M’←M×T; //Structure a new model according to model M and automator T of M’s execution tree.  
3. reachable←φ, level = 0; //initialize reachable set and context-boundary identifier.  
4. reachable←pre 1,M[H](g, A); //Calculate all reachable patterns in the first context. 
5. C0←pre1, M[H](g, A); //intermediate result is temporarily saved in C0 set. 
6. level++; 
7. A = local (C0∩(g’, (PΓ*)+)); //Update local state pattern. 
8. while(level≠k) // Time of context-boundary is K. 
10. {for all g’∈G.  
11. {A = local (Clevel -1 ∩ (g’, (PΓ*)+)); //Update local state pattern.  
12. Clevel←pre1, M[H](g’, A); } //intermediate result is temporarily saved in Clevel set. 
13. reachable←Clevel; //Put all reachable patterns in each context into reachable.  
14. level++;}. 
15. projT(reachable); //Conduct projection operation for patterns set.  
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execution mode of semantics. Besides, it combines the state of hedge-automator and corresponding 

model state into a new state to calculate reachable pattern of this intermediate model. Lastly, projection 

operation is conducted to get the patterns set on original model, and complexity of algorithm is presented 

to well solve the reachability problem under this model. The key content in future research will be 

following two aspects: 1) Combine summarization technology and optimize the algorithm by dint of 

summary course being abstract and able to be reused for many times; 2) As the algorithm herein can only 

be used in abstract models with limited global variables, next it is considered to extend it to abstract 

models with infinite global variables. 
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