
World Journal of Social Science Research
ISSN 2375-9747 (Print) ISSN 2332-5534 (Online)

Vol. 4, No. 4, 2017
www.scholink.org/ojs/index.php/wjssr

287

Reachability Analysis of Asynchronous Dynamic Pushdown

Networks Based on Tree Semantics Approach
Guodong Wu1* & Junyan Qian2

1 School of Information and Computer, Anhui Agricultural University, Hefei, China
2 Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin

541004, China
* Guodong Wu, E-mail: 1306160554@qq.com

Received: October 6, 2017 Accepted: October 15, 2017 Online Published: October 17, 2017

doi:10.22158/wjssr.v4n4p287 URL: http://dx.doi.org/10.22158/wjssr.v4n4p287

Abstract

ADPN (Asynchronous Dynamic Pushdown Networks) are an abstract model for concurrent programs

with recursive procedures and dynamic thread creation. Usually, asynchronous dynamic pushdown

networks are described with interleaving semantics, in which the backward analysis is not effective. In

order to improve interleaving semantics, tree semantics approach was introduced. This paper extends

the tree semantics to ADPN. Because the reachability problem of ADPN is also undecidable, we address

the context-bounded reachability problem and provide an algorithm for backward reachability analysis

with tree-based semantics Approach.

Keywords

DPN, ADPN, tree semantics, context-bounded, backward reachability

1. Introduction

With development of multi-core processor, the research on concurrent program has become the focus of

programming. Usually, the concurrent program employs concurrent pushdown system or parallel

procedure call for modeling, which two models, however, fail to well simulate program with dynamic

thread creation. Bouajjani et al. suggested in 2005 the DPN which are applicable to modeling of

concurrent program containing recursive procedures or dynamic thread creation, yet its execution

semantics is interleaving semantics, in which the backward reachability analysis is inefficient. Lammich

et al. suggested tree semantics for DPN to model execution of program as a tree, which more conforms to

actual running of program, and they provided the reachability analysis means for dynamic pushdown

networks under tree semantics yet without considering intercommunication of threads. Based on

dynamic pushdown networks model, Bouajjani raised ADPN model, whose reachability problem,

however, is undecidable and backward reachability on it is complicated. Faouzi modeled program

www.scholink.org/ojs/index.php/wjssr World Journal of Social Science Research Vol. 4, No. 4, 2017

288

Published by SCHOLINK INC.

containing dynamic thread creation, presented context-bounded analysis algorithm for this model, and

proved it is decidable. Wenner extended dynamic pushdown networks to weighted dynamic pushdown

networks to enhance modeling capacity of model. The paper extends tree semantic analysis into ADPN

model to make it more efficiently conduct backward reachability analysis, and solved undecidable

problem using the context-bounded approach. The backward reachable patterns set
*Pr Me of this model

keeps regularity property under tree semantics, i.e., able to construct automator to receive a group of

backward reachable patterns set
*Pr Me . The paper structures an intermediate model to simulate

execution mode of tree semantics, calculates backward reachable patterns set of this intermediate model

in context of finite times, and uses projection operation to derive the backward reachable patterns set on

original model. Finally, the complexity analysis on this algorithm is presented.

2. Relate Knowledge

ADPN is extension of DPN to simulate pushdown, new process and asynchronous communication of

inter-thread using of shared memory.

ADPN is a quintuple M = (G, P, Γ, △l, △g), where G is global state set, P is local state set, Γ is stack

symbol, △l is set of local migration rules: (a) ργ
l→ρ1w1; (b) ργ

l→ρ1w1 ▷ρ2w2, where ρ, ρ1, ρ2∈ P,

γ∈Γ, w1, w2∈Γ∗; △g is set of global migration rules: (a) (g, ργ)
l→ (g’, ρ1w1); (b) (g, ργ)

l→ (g’,

ρ1w1)▷ρ2w2; where g, g’ ∈ G , ρ, ρ1, ρ2 ∈ P, γ∈Γ, w1, w2∈Γ*.

ADPN’s pattern is (g, α) ∈ G × (P Γ*), where g is global state, character string α = ρ1w1ρ2w2 … ρn wn,

and each substring represents corresponding DPN pattern of ADPN pattern.

Let C represent ADPN pattern set, migration relation is defined as: (g, ս)
l→ (g’, v) is true, then

ργ
l→ p1 w1 belongs to rules set △l, and ս = ս1 ρ γ ս2, v = ս1 ρ1 w1 ս2, g = g’, or ργ

l→ p1 w1 ▷ ρ2 w2

belongs to rules set △l, or (g, ργ)
l→ (g’, ρ1 w1) belongs to rules set △g, and ս = ս1 ρ γ ս2, v = ս1 ρ1 w1

ս2, or (g, ργ)
l→ (g’, ρ1w1) ▷ ρ2w2, and ս = ս1ργս2, v = ս1 ρ2 w2 ρ1 w1 ս2;

Where ս1 ∈ (PΓ∗)*, ս2∈Γ∗(PΓ∗)*. Global migration and local migration rules sets constitute the whole

migration system.

State is reachable: There is ADPN M and patterns set S⊆C, define postM*(S) and preM*(S) as respectively

representing forward and backward reachable patterns sets that start from pattern S. The forward and

backward reachability problems can respectively be defined as: patterns set I and F are respectively

initial and a certain given pattern sets. To judge whether the state in given pattern F is reachable just

www.scholink.org/ojs/index.php/wjssr World Journal of Social Science Research Vol. 4, No. 4, 2017

289

Published by SCHOLINK INC.

needs to judge whether postM*(I)∩F = φ or preM*(F)∩I = φ is true. However, these two reachability

problems are both undecidable.

K-context-bounded state is reachable: Qadeer et al. Put forward context-bounded reachability analysis.

The calculation is switched from one thread to another thread, which is defined as context switching.

K-boundary means the corresponding migration sequence at most contains K contexts.

K-context-bounded state being reachable just means the set of state reachable by ADPN in K contexts.

postk,M*(S) and prek,M*(S) are respectively defined as set of forward and backward reachable patterns that

start from S and reachable to K-context-boundary. The K-context-bounded state reachability problem is

decidable. Musuvathi et al. proved that majority of states can be detected as long as K is set as a small

constant.

3. Tree Semantics of ADPN

This section extends tree semantics to ADPN, and migration sequence is partial order, which is similar to

a tree, as shown in Figure 1. The initial state of the migration sequence only contains a thread, and new

threads are created dynamically. The migration sequence of newly created threads correspond to

execution tree on the left of node S, and the migration sequence on the right of node S is original thread.

The form is defined as TM: = N L TM/S L TMTM/L < G,PΓ* >, where Nlt corresponds to non-dynamic

creation rule l, and what follows it is t; S l tst corresponds to dynamic creation rule l, and what follows it

is a dynamically created new thread node ts and original thread’s node t; L <g, pw> corresponds to the

pattern when thread running terminates. The advantage of tree semantics is immediately judging which

progress the migration belongs to via execution model of tree form.

N l1

S l2

N l4 N l3

L <g,pw> L <g,pw

spawn

Figure 1. ADPN Execution Tree

Definition 1 (Execution tree): The execution tree is defined as migration sequence of model under tree

semantics. Migration rule⇒M⊆<g, PΓ*>×TM×<g’, ConfN > means the initial state only contains

execution tree of single thread, where ConfN is pattern α of corresponding DPN. When the initial state

www.scholink.org/ojs/index.php/wjssr World Journal of Social Science Research Vol. 4, No. 4, 2017

290

Published by SCHOLINK INC.

contains multiple threads, definition
h

Mc c′⇒ means migration from pattern c to pattern c’ via execution

tree h, where h = t1 … tn.

The execution tree is regular. The paper adopts hedge-automator for receiving. Hedge-automator T = (S,

A0, D), where S is set of a group of finite states, A0 is an initial automator meeting L(A0)∈S*. Rules set D

= DL∪DN∪DS: The rule s→A1∈DL simulates leaf node, rule N

ls s D′→ ∈ simulates

non-dynamically created node, where, s, s’, ss∈S, l∈L, automator A1 receives all patterns sets (L(A1)∈(G,

(PΓ*)+)).

Execution tree h = t1 … tn∈TM* can be received by hedge-automator when and only when execution tree

t1 … tn can be simulated by rules set D and initial states set of execution tree respectively correspond to

initial states set s1 … sn∈L(A0) of automator. Rule labT⊆S×TM represents the association between

hedge-automator and execution tree, as shown below in form:

[Leaf node] labT (s, L <g, pw>)⇔s→A1∈DL∧<g, pw>∈L(A1)

[Non-dynamic creation] labT (s,N l t)⇔ (,)N T

ls s D lab s t′ ′→ ∈ ∧

[Dynamic creation] labT (s, S l ts t)⇔

(,) (,)s S T T s s

ls s s D lab s t lab s t′ ′→ ∈ ∧ ∧

Where labT(s, t) means the state of execution tree t corresponds to state s of automator. It is assumed that

labT(s1…sn,t1…tn)⇔labT(s1,t1)∧…∧labT(sn,tn), then the language received by hedge-automator T is

0() : { | (). (,)}TL T h s L A lab s h= ∃ ∈ .

4. Backward Reachable Algorithm Based on Tree Semantics

It is assumed that pattern of ADPN is <g, α>, where α is corresponding DPN pattern. Receiving pattern

α of automator A is structured according to literature. The paper will structure automator Z receiving

ADPN pattern <g, α>. For any character string u1pu2∈L(A), automator Z receives character string w =

u1(g,p)u2, where u1∈(PΓ*)*, p∈P, u2∈Γ*(PΓ*)*.

Theorem 1: ADPN M is given, and automator Z receives character string w = u1(g, p)u2, based on this,

the paper structures automator Zpre* as meeting L(Zpre*) = pre*(L(Z)). Time complexity for structuring

Zpre* automator is O (|Q3|×|△|).

Prove: There is ADPN M whose pattern is <g, α>, and automator A receives character string α = u1pu2,

automator Z = (Q, Σ, δ, q0, F) receiving character string w = u1(g, p)u2 can be easily structured, then

automator Zpre* = (Q, Σ, δ’, q0, F) is structured, wherein the rule of δ is as follows:

www.scholink.org/ojs/index.php/wjssr World Journal of Social Science Research Vol. 4, No. 4, 2017

291

Published by SCHOLINK INC.

1. If (g, pγ)
l→ (g’, p1w1) ∈△, and

1 1gp wq qδ ′→ , wherein q, q∈ Q, then (qp, γ, q’)∈δ’ is true, where

qp means the new state arrived after q receives character p.

2. If (g, pγ)
l→ (g′, p1 w1) ▷ ρ2w2∈△, and

2 2 1 1gp w p wq qδ ′→ , wherein q, q ∈ Q, then (qp, γ, q’)∈δ′

is true, wherein, qp means the new state arrived after q receives character p.

As state Q is constant, structuring of automator Zpre* is always terminable. According to rule of migrating

δ’, efficient automator structuring method is adopted to structure Zpre*, with time complexity of

structuring being O (|Q3|×|△|). Let <g, α>∈ pre* (L(Z)), and<g, α>
l→ <g, α’>, then <g, α’> ∈ L(Z).

Automator Z receives pattern <g, α’>. It is derived from structuring rule of automator Zpre* that <g, α>∈

L(Zpre*). Let <g, α>∈ L(Zpre*), and <g, α>
l→ <g, α’>, it is derived from structuring rule of Zpre* that <g,

α’>∈ L(Z), and it is concluded that <g, α>∈ pre*(L(Z)). So L(Zpre*) = pre*(L(Z)) is true. q.e.d.

To combine the state of hedge-automator and corresponding ADPN’s local state into a new state, and

realize execution mode of tree semantics for migration sequence, frist a special ADPN model M×T = (G,

P×S, Γ, L, △l, △g) is structured, whose pattern is C’×T⊆ConfM×T, and form is as follows:

C’×T: = {(g,(p1, s1)w1...(pn,sn)wn)|(g,p1w1...pnwn) ∈C′∧∀i.1≤i ≤n.∃A1.si→A1∈DL∧<g,piwi>∈L(A1)}

The new pattern C′×T combines state in hedge-automator H with the local state of each of its

corresponding model M, with form being (g,(p,s)γ).

Global migration rule △g of ADPN model M×T is defined as follows:

 [Non-dynamic creation rule]

(, (,)) (, (,)) g

lg p s g p s wγ ′ ′ ′ ′→ ∈∆ is true, when and only when

(,) (,) g N

lg p g pw s s Dγ ′ ′→ ∈∆ ∧ → ∈ is true.

 [Dynamic creation rule] (,(,)) (,(,)) (,)s s g

lg p s g p s w p s wγ ′ ′ ′ ′→ ∈∆ is true,

when and only when (,) (,) s s g s S

lg p g p w p w s s s Dγ ′ ′→ ∈∆ ∧ → ∈  is true.

Local migration rule △l is defined as follows:

[Non-dynamic creation rule]

(,) (,) l

lp s p s wγ ′ ′ ′→ ∈∆ is true, when and only when l N

l lp pw s s Dγ ′→ ∈∆ ∧ → ∈ is true.

www.scholink.org/ojs/index.php/wjssr World Journal of Social Science Research Vol. 4, No. 4, 2017

292

Published by SCHOLINK INC.

[Dynamic creation rule] (,) (,) (,)s s g

lp s p s w p s wγ ′ ′ ′→ ∈∆ is true, when and only when

s s g s S

l lp p w p w s s s Dγ ′ ′→ ∈∆ ∧ → ∈  is true.

Definition 2 (backward reachable pattern under tree semantics). There is given ADPN M, whose pattern

C’ = (g, α), C’∈ConfM, where α is corresponding DPN pattern. As pattern α can be received by

automator A, the form can also be C’ = (g, A). It is known that execution tree H⊆TM*, and backward

reachable patterns set based on tree semantics is defined as follows:

[]() : {(,) | (,) , .(,) (,)}
h

MM Mpre H C g Conf g C h H g gα α α α′ ′ ′ ′ ′ ′= ∈ ∃ ∈ ∈ ⇒ where H is regular execution tree. As C’

is regular set, so preM[H](C’) is also kept regular, and preM[H](C’) can be received by structuring

automator.

However, reachability problem of ADPN under tree sementics remain undecidable, and context-bounded

technology is adopted to solve this problem. Definition preK,M[H](C’) represents the K-context-bounded

backward reachable patterns set that starts from pattern C’ under model M.

Calculation of preK,M[H](C’) can be divided into K steps: first calculate pre1,M[H](C’), i.e., calculate

backward patterns set starting from pattern C’ and with context switching not occurring. For all patterns

set pre1,M[H](C’) calculated from previous context, and for all g’∈G, if (g’, u’) ∈ pre1,M[H](C’), then

calculate pre1,M[H](g’, u’). Calculate recursively like this until finishing calculating K contexts, to get

K-context-bounded backward reachable patterns set. Following is analysis on how to calculate

pre1,M[H](g, u).

As DPN automator A receives character string u1(p, s)u2, automator Z receiving a character string

u1(g,(p,s))u2 can be structured, where u1(p, s)u2∈L(A), u1∈((P, S)Γ*)*,p∈P,u2∈Γ*((P, S)Γ*)*.

According to theorum 1, the automator Zpre* can be structured, hence, following is derived:

pre1,M[H](g,u) =
*(,{ (*) : (,) ()})pre

g G
g w P w upu u g p u L Z+

′∈
′ ′ ′ ′∈ Γ = ∩∃ ∈

The patterns set pre1,M[H](C’) calculated each time is of (G,((P, S)Γ*)*) form. In local state, S represents

execution tree represented by hedge-automator in calculating reachable pattern. To get the patterns set of

original model, a projection operation projT: 2 2M T MConf Conf× → is defined.
projT(C) = {(g,p1w1 ... pnwn) | ∃s1,...sn∈S. s1,...sn∈L(A0) ∧(g,(p1, s1)w1...(pn, sn)wn)∈ C }

A backward reachable algorithm can be derived from above analysis, as shown in Figure 2.

www.scholink.org/ojs/index.php/wjssr World Journal of Social Science Research Vol. 4, No. 4, 2017

293

Published by SCHOLINK INC.

Figure 2. Reverse Reachability Algorithm Based on Tree Semantics

The first line simulates execution mode of tree semantics for migration sequence by structuring an

intermediate model M’. while cyclically controls K context-boundaries. local() represents the operation

of projecting ADPN patterns to DPN pattern. Clevel represents calculating reachable pattern under the

levelth context. pre1,M[H]() operation represents all possible reachable patterns sets in each context. As

the patterns sets from reach able sets are patterns set of intermediate model M’, the pattern of reach able

pattern set reachable is subjected to projection to get reachable patterns set under model M.

5. Analysis on Algorithm

The complexity of algorithm suggested herein is O(|G|k-1×|Q3|×|△|). The complexity of new model

structured via given model M and execution tree H is linear complexity. According to theorem 1, the time

complexity for structuring of automator Zpre* each time is |Q3|×|△|, as the time for context-boundary is k,

the execution sequence g1 … gk-1∈Gk-1 for for loop in the worst case has |G| k-1 possibilities. projT()

function is linear complexity, hence the complexity of algorithm is O(|G|k-1×|Q3|×|△|), which has certain

advantages over the algorithms such as k-delimited DPN reachability analysis, etc.

6. Conclusion

The tree semantics simulates the running of concurrent program more accurately than interleaving

semantics and extends modeling capacity of model (such as being able to show which thread the

migration belongs to), and can more efficiently conduct backward reachability analysis than interleaving

semantics. To make the reachability problem decidable, the algorithm adopts context-bounded approach

to make backward reachability analysis on ADPN, and structures an intermediate model to realize

Input: ADPN M，tuple M = (g, A) and integer k and pattern C
Output: Backward reachable patterns set pre*(C)
1. Structure hedge-automator T according to the rule as stated in section 3;
2. M’←M×T; //Structure a new model according to model M and automator T of M’s execution tree.
3. reachable←φ, level = 0; //initialize reachable set and context-boundary identifier.
4. reachable←pre 1,M[H](g, A); //Calculate all reachable patterns in the first context.
5. C0←pre1, M[H](g, A); //intermediate result is temporarily saved in C0 set.
6. level++;
7. A = local (C0∩(g’, (PΓ*)+)); //Update local state pattern.
8. while(level≠k) // Time of context-boundary is K.
10. {for all g’∈G.
11. {A = local (Clevel -1 ∩ (g’, (PΓ*)+)); //Update local state pattern.
12. Clevel←pre1, M[H](g’, A); } //intermediate result is temporarily saved in Clevel set.
13. reachable←Clevel; //Put all reachable patterns in each context into reachable.
14. level++;}.
15. projT(reachable); //Conduct projection operation for patterns set.

www.scholink.org/ojs/index.php/wjssr World Journal of Social Science Research Vol. 4, No. 4, 2017

294

Published by SCHOLINK INC.

execution mode of semantics. Besides, it combines the state of hedge-automator and corresponding

model state into a new state to calculate reachable pattern of this intermediate model. Lastly, projection

operation is conducted to get the patterns set on original model, and complexity of algorithm is presented

to well solve the reachability problem under this model. The key content in future research will be

following two aspects: 1) Combine summarization technology and optimize the algorithm by dint of

summary course being abstract and able to be reused for many times; 2) As the algorithm herein can only

be used in abstract models with limited global variables, next it is considered to extend it to abstract

models with infinite global variables.

References

Abdulla, P. A. et al. (2014). Budget-bounded model-checking pushdown systems. Formal Methods in

System Design, 2014, 273-301. https://doi.org/10.1007/s10703-014-0207-y

Atig, M. F., Abdulla, P. A., Kumar, K. N., & Saivasan, P. (2012). Linear time model-checking for

multithread programs under scope-bounding//proceedings of the 10th international symposium on

automated technology for verification and analysis. Thiruvananthapuram, 2012, 152-166.

Bouajjani, A., Esparza, J., Schwoon, S., & Strejcek, J. (2005). Reachability analysis of multithreaded

software with asynchronous communication. In Proc. of FSTTCS (Vol. 2005, pp. 348-359).

Hyderabad: Springer. https://doi.org/10.1007/11590156_28

Bouajjani, A., Müller-Olm, M., & Touili, T. (2005). Regular symbolic analysis of dynamic networks of

pushdown systems. In Proceedings of the 16th International Conference on Concurrency Theory

(pp. 473-487). https://doi.org/10.1007/11539452_36

Emmi, M. et al. (2015). Analysis of Asynchronous Programs with Event-Based Synchronization. In

Programming Languages and Systems (pp. 535-559). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-662-46669-8_22

Faouzi Atig, M., Bouajjani, A., & Qadeer, S. (2009). Context-bounded analysis for concurrent programs

with dynamic creation of threads. In Proceedings of the 15th International Conference on TACAS,

LNCS 5505 (Vol. 2009, pp. 107-123). Univ York: European Assoc.

Gawlitza, T. M., Lammich, P., Müller-Olm, M., Seidl, H., & Wenner, A. (2011). Join-Lock-Sensitive

forward reachability analysis for concurrent programs with dynamic process creation. In

Proceeding of the 12th international conference on verification, model checking, LNCS 6538 (pp.

199-213). https://doi.org/10.1007/978-3-642-18275-4_15

Irigoin, F., Jouvelot, P., & Triolet, R. (2014). Semantical interprocedural parallelization: An overview of

the PIPS project. In 25th Anniversary International Conference on Supercomputing Anniversary

(Vol. 2014, pp. 143-150). https://doi.org/10.1145/2591635.2667163

www.scholink.org/ojs/index.php/wjssr World Journal of Social Science Research Vol. 4, No. 4, 2017

295

Published by SCHOLINK INC.

Kahlon, V., & Gupta, A. (2006). An automata-theoretic approach for model checking threads for LTL

properties. In Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Society (pp.

101-110). Swattle: LICS 2006.

Lammich, P., Müller-Olm, M., & Wenner, A. (2009). Predecessor sets of dynamic pushdown networks

with tree-regular constraints. In Proceedings of CAV (pp. 525-539). Grenoble: Artist Design.

https://doi.org/10.1007/978-3-642-02658-4_39

Li, X., & Qian, J. Y. (2016). Research on k-delimited accessibility analysis for dynamic pushdown

network. Journal of Guilin university of electronic technology, 36(1), 48-51.

Musuvathi, M., & Qadeer, S. (2007). Iterative context bounding for systematic testing of multithreaded

programs. Conference on PLDI, 2007, 446-455. https://doi.org/10.1145/1250734.1250785

Pun, K. I., Steffen, M., & Stolz, V. (2014). Effect-polymorphic behaviour inference for deadlock

checking. In Software Engineering and Formal Methods (pp. 50-64). Springer International

Publishing. https://doi.org/10.1007/978-3-319-10431-7_5

Qian, J. Y. et al. (2016). Verification of real-time systems with time multi-pushdown net. Chinese

journal of computers, 39(11), 2253-2569.

Wenner, A. (2010). Weighted dynamic pushdown networks. In Programming Languages and Systems

(Vol. 2010, pp. 590-609). Heidelberg: Springer. https://doi.org/10.1007/978-3-642-11957-6_31

